123 research outputs found

    Fragile detection of solar g modes by Fossat et al

    Full text link
    The internal gravity modes of the Sun are notoriously difficult to detect, and the claimed detection of gravity modes presented in Fossat et al. 2017 is thus very exciting. Given the importance of these modes for understanding solar structure and dynamics, the results must be robust. While Fossat et al. 2017 described their method and parameter choices in detail, the sensitivity of their results to several parameters were not presented. Therefore, we test the sensitivity to a selection of them. The most concerning result is that the detection vanishes when we adjust the start time of the 16.5 year velocity time series by a few hours. We conclude that this reported detection of gravity modes is extremely fragile and should be treated with utmost caution.Comment: 15 pages, 11 Figure

    Surface Activity and Oscillation Amplitudes of Red Giants in Eclipsing Binaries

    Full text link
    Among 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16-24 % of the semi-major axis, and where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.Comment: 11 pages, 10 figures, Accepted in Ap

    Detection of Jovian seismic waves: a new probe of its interior structure

    Full text link
    Knowledge of Jupiter's deep interior would provide unique constraints on the formation of the Solar System. Measurement of its core mass and global composition would shed light on whether the planet formed by accretion or by direct gravitational collapse. At present, the inner structure of Jupiter is poorly constrained and seismology, which consists of identifying acoustic eigenmodes, offers a way to directly measure its deep sound speed profile, and thus its physical properties. Seismology of Jupiter has been considered since the mid 1970s, but hitherto the various attempts to detect global modes led, at best, to ambiguous results. We report the detection of global modes of Jupiter, based on radial velocity measurements performed with the SYMPA Fourier spectro-imager. The global seismic parameters that we measure include the frequency of maximum amplitude 1213+/-50 \mu Hz, the mean large frequency spacing between radial harmonics 155.3+/-2.2 \mu Hz and the mode maximum amplitude 49 (-10/+8) cm/s, all values that are consistent with current models of Jupiter. This result opens the way to the investigation of the inner structure of the Solar System's giant planets based on seismology techniques.Comment: Accepted in Astronomy & Astrophysics (8 pages, 9 figures

    Surface magnetism of rapidly rotating red giants: single versus close binary stars

    Full text link
    According to dynamo theory, stars with convective envelopes efficiently generate surface magnetic fields, which manifest as magnetic activity in the form of starspots, faculae, flares, when their rotation period is shorter than their convective turnover time. Most red giants, having undergone significant spin down while expanding, have slow rotation and no spots. However, based on a sample of about 4500 red giants observed by the NASA Kepler mission, a previous study showed that about 8 % display spots, including about 15 % that belong to close binary systems. Here, we shed light on a puzzling fact: for rotation periods less than 80 days, a red giant that belongs to a close binary system displays a photometric modulation about an order of magnitude larger than that of a single red giant with similar rotational period and physical properties. We investigate whether binarity leads to larger magnetic fields when tides lock systems, or if a different spot distribution on single versus close binary stars can explain this fact. For this, we measure the chromospheric emission in the CaII H & K lines of 3130 of the 4465 stars studied in a previous work thanks to the LAMOST survey. We show that red giants in a close-binary configuration with spin-orbit resonance display significantly larger chromospheric emission than single stars, suggesting that tidal locking leads to larger magnetic fields at a fixed rotational period. Beyond bringing interesting new observables to study the evolution of binary systems, this result could be used to distinguish single versus binary red giants in automatic pipelines based on machine learning.Comment: 10 pages, 8 Figures, accepted for publication in A&

    Red Giant Eclipsing Binaries: Exploring Non-Oscillators and Testing Asteroseismic Scalings

    Get PDF
    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for probing the Milky Way. Eclipsing binaries allow us to directly measure stellar properties independently of asteroseismology, which we use to investigate why some red giants don't oscillate and test asteroseismic scaling relations for those that do. By combining orbital solutions, high-resolution spectroscopy, and stellar evolution models for a subset of eight eclipsing red giants observed by Kepler, we find short-period binaries with strong tidal forces and systems with active red giants are less likely to exhibit solar-like oscillations. We also preview the results from Gaulme et al. 2016 (submitted). We find asteroseismic scalings overestimate red giant radii by about 6% on average and masses by about 16% in ten systems observed by Kepler. Systematic overestimation of mass leads to underestimation of stellar age, which has important implications for ensemble asteroseismology applied to galactic studies

    Venus wind map at cloud top level with the MTR/THEMIS visible spectrometer. I. Instrumental performance and first results

    Full text link
    Solar light gets scattered at cloud top level in Venus' atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line (5890 \AA). Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, 31 m/s per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at 151 +/- 16 m/s.Comment: 17 pages, 12 figure

    The Comparative Exploration of the Ice Giant Planets with Twin Spacecraft: Unveiling the History of our Solar System

    Full text link
    In the course of the selection of the scientific themes for the second and third L-class missions of the Cosmic Vision 2015-2025 program of the European Space Agency, the exploration of the ice giant planets Uranus and Neptune was defined "a timely milestone, fully appropriate for an L class mission". Among the proposed scientific themes, we presented the scientific case of exploring both planets and their satellites in the framework of a single L-class mission and proposed a mission scenario that could allow to achieve this result. In this work we present an updated and more complete discussion of the scientific rationale and of the mission concept for a comparative exploration of the ice giant planets Uranus and Neptune and of their satellite systems with twin spacecraft. The first goal of comparatively studying these two similar yet extremely different systems is to shed new light on the ancient past of the Solar System and on the processes that shaped its formation and evolution. This, in turn, would reveal whether the Solar System and the very diverse extrasolar systems discovered so far all share a common origin or if different environments and mechanisms were responsible for their formation. A space mission to the ice giants would also open up the possibility to use Uranus and Neptune as templates in the study of one of the most abundant type of extrasolar planets in the galaxy. Finally, such a mission would allow a detailed study of the interplanetary and gravitational environments at a range of distances from the Sun poorly covered by direct exploration, improving the constraints on the fundamental theories of gravitation and on the behaviour of the solar wind and the interplanetary magnetic field.Comment: 29 pages, 4 figures; accepted for publication on the special issue "The outer Solar System X" of the journal Planetary and Space Science. This article presents an updated and expanded discussion of the white paper "The ODINUS Mission Concept" (arXiv:1402.2472) submitted in response to the ESA call for ideas for the scientific themes of the future L2 and L3 space mission
    • …
    corecore